3.2.55 \(\int \tan ^p(a+\log (x)) \, dx\) [155]

Optimal. Leaf size=120 \[ \left (1-e^{2 i a} x^{2 i}\right )^{-p} \left (\frac {i \left (1-e^{2 i a} x^{2 i}\right )}{1+e^{2 i a} x^{2 i}}\right )^p \left (1+e^{2 i a} x^{2 i}\right )^p x F_1\left (-\frac {i}{2};-p,p;1-\frac {i}{2};e^{2 i a} x^{2 i},-e^{2 i a} x^{2 i}\right ) \]

[Out]

(I*(1-exp(2*I*a)*x^(2*I))/(1+exp(2*I*a)*x^(2*I)))^p*(1+exp(2*I*a)*x^(2*I))^p*x*AppellF1(-1/2*I,-p,p,1-1/2*I,ex
p(2*I*a)*x^(2*I),-exp(2*I*a)*x^(2*I))/((1-exp(2*I*a)*x^(2*I))^p)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {4587, 1986, 441, 440} \begin {gather*} x \left (1-e^{2 i a} x^{2 i}\right )^{-p} \left (\frac {i \left (1-e^{2 i a} x^{2 i}\right )}{1+e^{2 i a} x^{2 i}}\right )^p \left (1+e^{2 i a} x^{2 i}\right )^p F_1\left (-\frac {i}{2};-p,p;1-\frac {i}{2};e^{2 i a} x^{2 i},-e^{2 i a} x^{2 i}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[a + Log[x]]^p,x]

[Out]

(((I*(1 - E^((2*I)*a)*x^(2*I)))/(1 + E^((2*I)*a)*x^(2*I)))^p*(1 + E^((2*I)*a)*x^(2*I))^p*x*AppellF1[-1/2*I, -p
, p, 1 - I/2, E^((2*I)*a)*x^(2*I), -(E^((2*I)*a)*x^(2*I))])/(1 - E^((2*I)*a)*x^(2*I))^p

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 441

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^F
racPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rule 4587

Int[Tan[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[((I - I*E^(2*I*a*d)*x^(2*I*b*d))/(1 + E^(2*I*a*
d)*x^(2*I*b*d)))^p, x] /; FreeQ[{a, b, d, p}, x]

Rubi steps

\begin {align*} \int \tan ^p(a+\log (x)) \, dx &=\int \tan ^p(a+\log (x)) \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.58, size = 240, normalized size = 2.00 \begin {gather*} \frac {(1+2 i) \left (-\frac {i \left (-1+e^{2 i a} x^{2 i}\right )}{1+e^{2 i a} x^{2 i}}\right )^p x F_1\left (-\frac {i}{2};-p,p;1-\frac {i}{2};e^{2 i a} x^{2 i},-e^{2 i a} x^{2 i}\right )}{(1+2 i) F_1\left (-\frac {i}{2};-p,p;1-\frac {i}{2};e^{2 i a} x^{2 i},-e^{2 i a} x^{2 i}\right )-2 i e^{2 i a} p x^{2 i} \left (F_1\left (1-\frac {i}{2};1-p,p;2-\frac {i}{2};e^{2 i a} x^{2 i},-e^{2 i a} x^{2 i}\right )+F_1\left (1-\frac {i}{2};-p,1+p;2-\frac {i}{2};e^{2 i a} x^{2 i},-e^{2 i a} x^{2 i}\right )\right )} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[a + Log[x]]^p,x]

[Out]

((1 + 2*I)*(((-I)*(-1 + E^((2*I)*a)*x^(2*I)))/(1 + E^((2*I)*a)*x^(2*I)))^p*x*AppellF1[-1/2*I, -p, p, 1 - I/2,
E^((2*I)*a)*x^(2*I), -(E^((2*I)*a)*x^(2*I))])/((1 + 2*I)*AppellF1[-1/2*I, -p, p, 1 - I/2, E^((2*I)*a)*x^(2*I),
 -(E^((2*I)*a)*x^(2*I))] - (2*I)*E^((2*I)*a)*p*x^(2*I)*(AppellF1[1 - I/2, 1 - p, p, 2 - I/2, E^((2*I)*a)*x^(2*
I), -(E^((2*I)*a)*x^(2*I))] + AppellF1[1 - I/2, -p, 1 + p, 2 - I/2, E^((2*I)*a)*x^(2*I), -(E^((2*I)*a)*x^(2*I)
)]))

________________________________________________________________________________________

Maple [F]
time = 0.04, size = 0, normalized size = 0.00 \[\int \tan ^{p}\left (a +\ln \left (x \right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(a+ln(x))^p,x)

[Out]

int(tan(a+ln(x))^p,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(a+log(x))^p,x, algorithm="maxima")

[Out]

integrate(tan(a + log(x))^p, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(a+log(x))^p,x, algorithm="fricas")

[Out]

integral(tan(a + log(x))^p, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \tan ^{p}{\left (a + \log {\left (x \right )} \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(a+ln(x))**p,x)

[Out]

Integral(tan(a + log(x))**p, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(a+log(x))^p,x, algorithm="giac")

[Out]

integrate(tan(a + log(x))^p, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\mathrm {tan}\left (a+\ln \left (x\right )\right )}^p \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(a + log(x))^p,x)

[Out]

int(tan(a + log(x))^p, x)

________________________________________________________________________________________